Environmental Biotechnology
Online EB edition > 2016 Volume 10 > Article


Short communication

Qualitative analysis of bacterial biocenoses in two sequencing batch reactors treating reject water under different technological conditions
Agata Karło, Aleksandra Ziembińska-Buczyńska, Grzegorz Cema, Joanna Surmacz Górska

Pages: 26-33

DOI: 10.14799/ebms266

open PDF file


Abstract

Complete nitrogen removal over nitrite (CANON) was used to treat reject water with ammonia concentrations ranging from 70 to 154mg·L-1. Two experimental sequential batch reactors, SBR_A and SBR_B, differed in the time of the reject water inflow (6h40min vs 40min), process temperature (25 vs 29°C), and the number of aeration periods per day (3 vs 6, respectively). Nitrogen removal efficiency was higher in SBR_B (50-90%) than in SBR_A (40-80%). Analysis of total (PCR-DGGE) and active (RT-PCR-DGGE) bacteria revealed that the biodiversity of the bacterial biocenoses, expressed as the Shannon-Wiener Biodiversity Index, was higher in SBR_B (2.75-3.10) than in SBR_A (1.80-2.75).


References

Chu, Z.-R., K. Wang, X.-K. Li, M.-T. Zhu, L. Yang, J. Zhang. 2015. Microbial characterization of aggregates within a one-stage nitritation-anammox system using high-throughput amplicon sequencing. Chemical Engineering Journal 262: 41-48.
https://doi.org/10.1016/j.cej.2014.09.067

Furukawa, K., Y. Inatomi, Q. Sen, Q. Lai, T. Yamamoto, K. Isaka, T. Sumino. 2009. Innovative treatment system for digester liquor using anammox proces. Bioresource Technology 100: 5437-5443.
https://doi.org/10.1016/j.biortech.2008.11.055

Fux, Ch., M. Boehler, P. Huber, I. Brunner, H. Siegrist. 2002. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology 99: 295-306.
https://doi.org/10.1016/S0168-1656(02)00220-1

Galí, A., J. Dosta, M.C.M. Van Loosdrecht, J. Mata-Alvarez. 2007. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry 42: 715-720.
https://doi.org/10.1016/j.procbio.2006.12.002

Jin, R.-C.,G.-F. Yang, J.-J. Yu, P. Zheng. 2012. The inhibition of the Anammox process: A review. Chemical Engineering Journal 197: 67-79.
https://doi.org/10.1016/j.cej.2012.05.014

Liu, T., D. Li, Z. Huiping, X. Li, T. Zeng, X. Chang, Y. Cai, J. Zhang. 2012a. Biodiversity and quantification of functional bacteria in completely autotrophic nitrogen-removal over nitrite (CANON) process. Bioresource Technology 118: 399-406.
https://doi.org/10.1016/j.biortech.2012.05.036

Liu, T., D. Li, H. Zeng, X. Li, Y. Liang, X. Chang, J. Zhang. 2012b. Distribution and genetic diversity of functional microorganisms in different CANON reactors. Bioresource Technology 123: 574-580.
https://doi.org/10.1016/j.biortech.2012.07.114

Muyzer, G., E.C. de Waal, A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA. Applied and Environmental Microbiology 59: 695-700.

Strous, M., J.J. Heijnen, J.G. Kuenen, M.S.M. Jetten. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidizing microorganisms. Applied Microbiology and Biotechnology 50: 589–596.
https://doi.org/10.1007/s002530051340

Strous, M., J.A. Fuerst, E.H.M. Kramer, S. Logemann, G. Muyzer, K.T. Van de Pas-Schoonen, R. Webb, J.G. Kuenen, M.S.M. Jetten. 1999. Missing litotroph identified as new planctomycete. Nature 400: 446-449.
https://doi.org/10.1038/22749

Third, K.A., J. Paxman, M. Schmid, M. Strous, M.S.M. Jetten, R. Cord-Ruwisch. 2005. Treatment of nitrogen-rich wastewater using partial nitrification and anammox in the CANON process. Water Science and Technology 52: 47-54.

Van de Vossenberg, J., J.E. Rattray, W. Geerts, B. Kartal, L. van Niftrik, E.G. van Donselaar, J.S.S. Damste, M. Strous, M.S.M. Jetten. 2008. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environmental Microbiology 10: 3120–3129.
https://doi.org/10.1111/j.1462-2920.2008.01643.x

Van der Star, W.R.I., W.R. Abma, D. Bolmmers, J.W. Mulder, T. Tokutomi, M. Strous, C. Picioreanu, M.C.M. Van Loosdrecht. 2007. Start-up of reactors for anoxic ammonium oxidation: experiences from the first full-scale Anammox reactor in Rotterdam. Water Research 41: 4149-4163.
https://doi.org/10.1016/j.watres.2007.03.044

Van Loosdrecht, M.C.M., M.S.M. Jetten. 1998. Microbiological conversions in nitrogen removal. Water Science and Technology 38: 1-7.
https://doi.org/10.1016/S0273-1223(98)00383-7

Vega-De Lille, M., V. Berkhout, L. Fröba, F. Groß, A. Delgado. 2015. Ammonium estimation in an ANAMMOX SBR treating anaerobically digested domestic wastewater. Chemical Engineering Science 130: 109-119.
https://doi.org/10.1016/j.ces.2015.03.018

Watanabe, T., S. Asakawa, A. Nakamura, K. Nagoka, M. Kimura. 2004. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiology Letters 232: 153-163.
https://doi.org/10.1016/S0378-1097(04)00045-X

Zhang, L., J. Yang, K. Furukawa. 2010. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox. Journal of Bioscience and Bioengineering 110: 441-448.
https://doi.org/10.1016/j.jbiosc.2010.05.008

Ziembińska-Buczyńska, A., A. Banach, T. Bacza, M. Pieczykolan. 2014. Diversity and variability of methanogens during the shift from mesophilic to thermophilic conditions while biogas production. World Journal of Microbiology and Biotechnology 30: 3047-3053.
https://doi.org/10.1007/s11274-014-1731-z


  © ChemProf 2009